This session will take a look at better Unicode support, query processing improvements for row store tables, secure enclaves, and other neat things you'll find useful as a modern database administrator or developer.
Azure offers a comprehensive set of big-data solutions that help you gather, store, process, analyse and visualise data of any variety, volume or velocity, so you can discover new opportunities and take quick action. In this overview session, we’ll look at the various components within Azure that make up the Modern Data Warehouse, enable Real-Time Analytics, and support Advanced Analytics scenarios. You should leave with a high level understanding of the capabilities and limitations of each of the products within the Azure Analytics portfolio.
The video is not available to view online.
We will review this new feature of ADFv2, do deep dive to understand the mentioned techniques, compare them to SSIS and/or T-SQL and learn how modelled data flow runs Scala behind the scenes.
Azure Databricks support both Classic and Deep Learning ML Algorithms to analyse Large DataSets at scale. The Integrated Notebook experience gives the Data Scientists and Data Engineers to do exploratory Data Analysis, also feels like native to Jupyter notebook users. In this session we will extract intelligence from Higgs Dataset (Particle Physics) by running Classic and Deep Learning models using Azure Databricks. We will also peek into AMl service's integration with Azure Databricks for managing the end-to-end machine learning lifecycle.
The video is not available to view online.
<<1>>