Find out how a major UK hotel chain unified their wildly different sources of data to build a supercharged analytics and pricing engine to power their business. Find out how Cosmos and Databricks helped them get to know their customers, how best to retain them, and how best to keep them happy, all while ensuring GDPR compliance and the right to be forgotten.
We will review this new feature of ADFv2, do deep dive to understand the mentioned techniques, compare them to SSIS and/or T-SQL and learn how modelled data flow runs Scala behind the scenes.
Azure Databricks support both Classic and Deep Learning ML Algorithms to analyse Large DataSets at scale. The Integrated Notebook experience gives the Data Scientists and Data Engineers to do exploratory Data Analysis, also feels like native to Jupyter notebook users. In this session we will extract intelligence from Higgs Dataset (Particle Physics) by running Classic and Deep Learning models using Azure Databricks. We will also peek into AMl service's integration with Azure Databricks for managing the end-to-end machine learning lifecycle.
Azure offers a vast comprehensive data estate! While this is great for enabling users to pick the right tools for the right job - this has also increased the surface area for understanding how to integrate a vast number of components. In this session, we will show off the plug and play nature of Azure products by showcasing you can write to Azure Cosmos DB with a data pipeline moving data from multiple sources powered by Azure Data Factory and Databricks.
We’ll take a look at how to approach making an Azure Databricks based ETL solution from start to finish. Along the way it will become clear how Azure Databricks works and we will use our SSIS knowledge to see if it can handle common use-cases
SQL Data Warehouse is a cloud-based Enterprise Data Warehouse (EDW) that leverages Massively Parallel Processing (MPP) to quickly run complex queries across petabytes of data. Azure Databricks is a fast, easy and collaborative Apache Spark-based analytics service that can be used for big data analytics and artificial intelligence (AI) solutions. This session will cover the architecture patterns for using the two in synergy.
Azure DataBricks is a PaaS offering of Apache Spark, which allows for blazing fast data processing! How can data engineers harness the in-memory processing power? Azure DataBricks can be your data ingestion, transformation and curation tool of choice
With a strong focus on the algorithms used in Machine Learning, we will explore the maths involved to gain a deeper understanding. Using practical examples, with Databricks to consume a dataset and Python scripts to execute the models.
<<1>>